Contents

Foreword
Preface

Chapter 1 Background

1.1 Introduction 1
1.2 System Software and Machine Architecture 3
1.3 The Simplified Instructional Computer (SIC) 4
1.3.1 SIC Machine Architecture 5
1.3.2 SIC/XE Machine Architecture 7
133 SIC Programming Examples 14
1.4 Traditional (CISC) Machines 23
1.41 VAX Architecture 23
142 Pentium Pro Architecture 27
1.5 RISC Machines 31
1.5.1 UltraSPARC Architecture 31
1.5.2 PowerPC Architecture 35
153 Cray T3E Architecture 39
Exercises 42

Chapter 2 Assemblers

2.1 Basic Assembler Functions 46
211 ASimple SIC Assembler 48
212 Assembler Algorithm and Data Structures 52
2.2 Machine-Dependent Assembler Features 54
221 Instructicn Formats and Addressing Modes 59
222 Program Relocation 63
2.3 Machine-Indepen'dent Assembler Features 67
231 Literals 68
232 Symbol-Defining Statements 73
233 Expressions 77
234 Program Blocks 79
235 Control Sections and Program Linking 87
24 Assembler Design Options 96
24.1 One-Pass Assemblers 96
242 Multi-Pass Assemblers 103

vii

45

xi

xii Contents

2.5 Implementation Examples 108
251 MASM Assembler 108
252 SPARC Assembler 111
253 AIX Assembler 113

Exercises 116

Chapter 3 Loaders and Linkers 129

3.1 Basic Loader Functions 130
3.1.1 Design of an Absolute Loader 130
3.1.2 ASimple Bootstrap Loader 132

3.2 Machine-Dependent Loader Features 135
321 Relocation 136
322 Program Linking 141
3.2.3 Algorithm and Data Structures for a Linking Loader 148

3.3 Machine-Independent Loader Features 154
33.1 Automatic Library Search 154
3.3.2 Loader Options 156

3.4 Loader Design Options 158
34.1 Linkage Editors 159
34.2 Dynamic Linking 162
343 Bootstrap Loaders 165

3.5 Implementation Examples 166
351 MS-DOS Linker 167
3.52 SunOS Linkers 169
353 Cray MPP Linker 171

Exercises 173

Chapter 4 Macro Processors 181

4.1 Basic Macro Processor Functions 182

411 Macro Definition and Expansion 182

412 Macro Processor Algorithm and Data Structures 186
4.2 Machine-Independent Macro Processor Features 192

421 Concatenation of Macro Parameters 192

422 Generation of Unique Labels 194

423 Conditional Macro Expansion 195

424 Keyword Macro Parameters 202
4.3 Macro Processor Design Options 204

431 Recursive Macro Expansion 205

432 General-Purpose Macro Processors 209

433 Macro Processing within Language Translators 211

44

Contents

Implementation Examples 213

44.1 MASM Macro Processor 214
442 ANSIC Macro Language 216
443 The ELENA Macro Processor 221

Exercises 225

Chapter 5 Compilefs 233

51

52

53

5.4

5.5

Basic Compiler Functions 233
511 Grammars 235

5.1.2 Lexical Analysis 239
5.1.3 Syntactic Analysis 249
5.1.4 Code Generation 258

Machine-Dependent Compiler Features 266
5.2.1 Intermediate Form of the Program 270
5.2.2 Machine-Dependent Code Optimization 272

Machine-Independent Compiler Features 276

5.3.1 Structured Variables 276

5.3.2 Machine-Independent Code Optimization 281
5.3.3 Storage Allocation 286

5.3.4 Block-Structured Languages 292

Compiler Design Options 296

54.1 Division into Passes 297

542 Interpreters 298

54.3 P-Code Compilers 299

544 Compiler-Compilers 301
Implementation Examples 302

551 SunOS C Compiler 303

5.5.2 Java Compiler and Environment 305
5.5.3 The YACC Compiler-Compiler 307

Exercises 310

Chapter 6 Operating Systems 317

6.1
6.2

Basic Operating System Functions 317
Machine-Dependent Operating System Features 320
6.2.1 Interrupt Processing 321

6.2.2 Process Scheduling 328

6.23 I/0 Supervision 332

624 Management of Real Memory 342

6.2.5 Management of Virtual Memory 345

xiii

xiv

Contents

6.3 Machine-Independeni Operating System Features

6.3.1 File Processing 356

6.3.2 Job Scheduling 359

6.3.3 Resource Allocation 362
6.4 Operating Systcin Design Options 367

6.4.1 Multiprocessor Operating Systems 368

6.42 Distributed Operating Systems 370

6.43 Object-Oriented Operating Systems 373
6.5 Implementation Examples 375

651 MS-DOS 375

6.52 Windows 95 378

6.53 SunOS 381

6.54 UNICOS/mk 384

6.55 Amoeba 385

Exercises 387

Chapter 7 Other System Software

7.1 Database Management Systems 393
7.1.1 Basic Concept of a DBMS 393
7.1.2 Levels of Data Description 398
713 UseofaDBMS 401
7.2 Text Editors 405
721 Overview of the Editing Process 405
722 User Interface 406
7.2.3 Editor Structure 409

7.3 Interactive Debugging Systems 414

355

73.1 Debugging Functions and Capabilities 414
7.3.2 Relationship with Other Parts of the System 418

7.3.3 User-Interface Criteria 418
Exercises 420

Chapter 8 Software Engineering Issues

8.1 Introduction to Software Engineering Concepts 421

8.1.1 Background and Definitions 422
8.1.2 The Software Development Process 423

8.1.3 Software Maintenance and Evolution 426

8.2 System Specifications 427
8.2.1 Goals of System Specifications 427
8.2.2 Types of Specifications 428
8.2.3 Error Conditions 431

393

421

8.3 Procedural System Design 433
8.3.1 Data Flow Diagrams 433
8.3.2 General Principles of Modular Design 438
8.3.3 Partitioning the Data Flow Diagram 439
834 Module Interfaces 444

8.4 Object-Oriented System Design 448
8.4.1 Principles of Object-Oriented Programming 448
84.2 Object-Oriented Design of an Assembler 452

8.5 System Testing Strategies 458
85.1 Levels of Testing 458
8.52 Bottom-Up Testing 460
8.5.3 Top-Down Testing 461

Exercises 463

Appendix A SIC/XE Instruction Set and Addressing Modes
Appendix B ASCIl Character Codes

Appendix C SIC/XE Reference Material

References

Index

Contents

469

' 475

477

481

485

XV

Chapter 1

Background

This chapter contains a variety of information that serves as background for
the material presented later. Section 1.1 gives a brief introduction to system
software and an overview of the structure of this book. Section 1.2 begins a
discussion of the relationships between system software and machine architec-
ture, which continues throughout the text. Section 1.3 describes the Simplified
Instructional Computer (SIC) that is used to present fundamental software
concepts. Sections 1.4 and 1.5 provide an introduction to the architecture of
several computers that are used as examples throughout the text. Further
information on most of the machine architecture topics discussed can be found
in Tabak (1995) and Patterson and Hennessy (1996).

1.1 INTRODUCTION

This text is an introduction to the design and implementation of system soft-
ware. System software consists of a variety of programs that support the opera-
tion of a computer. This software makes it possible for the user to focus on an
application or other problem to be solved, without needing to know the
details of how the machine works internally.

When you took your first programming course, you were already using
many different types of system software. You probably wrote programs in a
high-level language like C++ or Pascal, using a text editor to create and modify
the program. You translated these programs into machine language using a
compiler. The resulting machine language program was loaded into memory
and prepared for execution by a loader or linker. You may have used a debugger
to help detect errors in the program.

In later courses, you probably wrote programs in assembler language. You
may have used macro instructions in these programs to read and write data,
or to perform other higher-level functions. You used an assembler, which prob-
ably included a macro processor, to translate these programs into machine lan-
guage. The translated programs were prepared for execution by the loader or
linker, and may have been tested using the debugger. '

System Software

You controlled all of these processes by interacting with the operating
system of the computer. If you were using a system like UNIX or DOS, you
probably typed commands at a keyboard. If you were using -a system like
MacOS or Windows, you probably specified commands with menus and a
point-and-click interface. In either case, the operating system took care of all
the machine-level details for you. Your computer may have been connected to
a network, or may have been shared by other users. It may have had many
different kinds of storage devices, and several ways of performing input and
output. However, you did not need to be concerned with these issues. You
could concentrate on what you wanted to do, without worrying about how it
was accomplished. ,

As you read this book, you will learn about several important types of
system software. You will come to understand the processes that were going
on “behind the scenes” as you used the computer in previous courses. By
understanding the system software, you will gain a deeper understanding of
how computers actually work.

The major topics covered in this book are assemblers, loaders and linkers,
macro processors, compilers, and operating systems; each of Chapters 2
through 6 is devoted to one of these subjects. We also consider implementations
of these types of software on several real machines. One central theme of
the book is the relationship between system software and machine architecture:
the design of an assembler, operating system, etc., is influenced by the architec-
ture of the machine on which it is to run. Some of these influences are
discussed in the next section; many other examples appear throughout the text.

Chapter 7 contains a survey of some other important types of system soft-
ware: database management systems, text editors, and interactive debugging
systems. Chapter 8 contains an introduction to software engineering concepts
and techniques, focusing on the use of such methods in writing system soft-
ware. This chapter can be read at any time after the introduction to assemblerb
in Section 2.1.

The depth of treatment in this text varies considerably from one topic to
another. The chapters on assemblers, loaders and linkers, and macro processors
contain enough implementation details to prepare the reader to write these
types of software for a real computer. Compilers and operating systems on the
other hand, are very large topics; each has, by itself, been the subject of many

complete books and courses. It is obviously impossible to provide a full cover-
age of these subjects in a single chapter of any reasonable size. Instead we pro-
vide an introduction to the most important concepts and issues, 'related to
compilers and operating systems, stressing the relationships between software
design and machine architecture. Other subtopics are discussed as space per-
mits, with references provided for readers who wish to explore these areas fur-
ther. Our goal is to provide a good overview of these subjects that can also serve

Background

as background for students who will later take more advanced software courses.
This same approach is also applied to the other topics surveyed in Chapter 7.

1.2 SYSTEM SOFTWARE AND MACHINE ARCHITECTURE

One characteristic in which most system software differs from application soft-
ware is machine dependency. An application program is primarily concerned
with the solution of some problem, using the computer as a tool. The focus is
on the application, not on the computing system. System programs, on the
other hand, are intended to support the operation and use of the computer
itself, rather than any particular application. For this reason, they are usually
related to the architecture of the machine on which they are to run. For exam-
ple, assemblers translate mnemonic instructions into machine code; the
instruction formats, addressing modes, etc., are of direct concern in assembler
design. Similarly, compilers must generate machine language code, taking into
account such hardware characteristics as the number and type of registers and
the machine instructions available. Operating systems are directly concerned
with the management of nearly all of the resources of a computing system.
Many other examples of such machine dependencies may be found through-
out this book.

On the other hand, there are some aspects of system software that do not
directly depend upon the type of computing system being supported. For
example, the general design and logic of an assembler is basically the same on
most computers. Some of the code optimization techniques used by compilers
are independent of the target machine (although there are also machine-
dependent optimizations). Likewise, the process of linking togethex indepen-
dently assembled subprograms does not usually depend on the computer
being used. We will also see many examples of such machine-independent
features in the chapters that follow.

Because most system software is machine-dependent, we must include real
machines and real pieces of software in our study. However, most real com-
puters have certain characteristics that are unusual or even unique. It can be
difficult to distinguish between those features of the software that are truly
fundamental and those that depend solely on the idiosyncrasies of a particular
machine. To avoid this problem, we present the fundamental functions of each
piece of software through discussion of a Simplified Instructional Computer
(SIC). SIC is a hypothetical computer that has been carefully designed to
include the hardware features most often found on real machines, while
avoiding unusual or irrelevant complexities. In this way, the central concepts
of a piece of system software can be clearly separated from the implementa-
tion details associated with a particular machine. This approach provides the

System Software

reader with a starting point from which to begin the design of system software
for a new or unfamiliar computer.

Each major chapter in this text first introduces the basic functions of
the type of system software being discussed. We then consider machine-
dependent and machine-independent extensions to these functions, and exam-
ples of implementations on actual machines. Specifically, the major chapters
are divided into the following sections:

1. Features that are fundamental, and that should be found in any
example of this type of software.

2. Features whose presence and character are closely related to the
machine architecture.

-

3. Other features that are commonly found in implementations of this
type of software, and that are relatively machine-independent,

4. Major design options for structuring a particular piece of software—
for example, single-pass versus multi-pass processing.

5. Examples of implementations on actual machines, stressing unusual
software features and those that are related to machine characteristics.

This chapter contains brief descriptions of SIC and of the real machines
that are used as examples. You are encouraged to read these descriptions now,
and refer to them as necessary when studying the examples in each chapter.

1.3 THE SIMPLIFIED INSTRUCTIONAL COMPUTER (SIC)

In this section we describe the architecture of our Simplified Instructional
Computer (SIC). This machine has been designed to illustrate the most com-
monly encountered hardware features and concepts, while avoiding most of
the idiosyncrasies that are often found in real machines.

Like many other products, SIC comes in two versions: the standard model
and an XE version (XE stands for “extra equipment,” or perhaps “extra expen-
sive”). The two versions have been designed to be upward compatible—that is,
an object program for the standard SIC machine will also execute properly on a
SIC/XE system. (Such upward compatibility is often found on real computers
that are closely related to one another.) Section 1.3.1 summarizes the standard
features of SIC. Section 1.3.2 describes the additional features that are included
in SIC/XE. Section 1.3.3 presents simple examples of SIC and SIC/XE program-
ming. These examples are intended to help you become more familiar with the
SIC and SIC/XE instruction sets and assembler language. Practice exercises in
SIC and SIC/XE programming can be found at the end of this chapter.

Background

1.3.1 SIC Machine Architecture

Memory

Memory consists of 8-bit bytes; any 3 consecutive bytes form a word (24 bits).
All addresses on SIC are byte addresses; words are addressed by the location
of their lowest numbered byte. There are a total of 32,768 (2!) bytes in the
computer memory.

Registers

There are five registers, all of which have special uses. Each register is 24 bits
in length. The following table indicates the numbers, mnemonics, and uses of
these registers. (The numbering scheme has been chosen for compatibility
with the XE version of SIC.)

Mnemonic Number Special use

A 0 Accumulator; used for arithmetic operations
X 1 Index register; used for addressing
L 2 ‘Linkage register; the Jump to Subroutine (JSUB)

instruction stores the return address
in this register

PC 8 Program counter; contains the address of the
next instruction to be fetched for execution

SW 9 Status word; contains a variety of
information, including a Condition Code (CC)

Data Formats

Integers are stored as 24-bit binary numbers; 2’s complement representation is
used for negative values. Characters are stored using their 8-bit ASCII codes
(see Appendix B). There is no floating-point hardware on the standard version
of SIC.

Instruction Formats

All machine instructions on the standard version of SIC have the following
24-bit format:

System Software

8 1 15
opcode X " address

The flag bit x is used to indicate indexed-addressing mode.

Addressing Modes

There are two addressing modes available, indicated by the setting of the x bit
in the instruction. The following table describes how the target address is calcu-
lated from the address given in the instruction. Parentheses are used to indi-
cate the contents of a register or a memory location. For example, (X)
represents the contents of register X.

Mode Indication . Target address calculation
Direct x=0 TA = address

_Indexed x=1 TA = address + (X)

Direct addressing mode

Example. LDA TEN

{0000 0000 of001 0000 0000 0000 |

0 0 1 0 0 0
" opcode X TEN

Effection address (EA) = 1000
Content of the address 1000 is loaded to Accumulator.

Indexed addressing mode

Example. STCH BUFFER, X

(0101 0100 [1]001 0000 0000 0000

5 4 1 0 0 0
opcode X BUFFER

Effective address (EA) = 1000 + [X] _
= 1000 + conent of the index register X
The Accumulator content, the character is loaded to the Effective address.

Background

Instruction Set

SIC provides a basic set of instructions that are sufficient for most simple
tasks. These include instructions that load and store registers (LDA, LDX, STA,
STX, etc.), as well as integer arithmetic operations (ADD, SUB, MUL, DIV). All
arithmetic operations involve register A and a word in memory, with the result
being left in the register. There is an instruction (COMP) that compares the
value in register A with a word in memory; this instruction sets a condition code
CC to indicate the result (<, =, or >). Conditional jump instructions (JLT, JEQ,
JGT) can test the setting of CC, and jump accordingly. Two instructions are
provided for subroutine linkage. JSUB jumps to the subroutine, placing the
return address in register L; RSUB returns by jumping to the address con-
tained in register L.

Appendix A gives a complete list of all SIC (and SIC/XE) instructions,
with their operation codes and a specification of the function performed by
each.

Input and Output

- On the standard version of SIC, input and output are performed by transfer-
ring 1 byte at a time to or from the rightmost 8 bits of register A. Each device is
assigned a unique 8-bit code. There are three I/O instructions, each of which
specifies the device code as an operand.

The Test Device (TD) instruction tests whether the addressed device is
ready to send or receive a byte of data. The condition code is set to indicate the
result of this test. (A setting of < means the device is ready to send or receive,
and = means the device is not ready.) A program needing to transfer data must
wait until the device is ready, then execute a Read Data (RD) or Write Data
(WD). This sequence must be repeated for each byte of data to be read or writ-
ten. The program shown in Fig. 2.1 (Chapter 2) illustrates this technique for
~ performing I/0.

1.3.2 SIC/XE Machine Architecture

Memory

The memory structure for SIC/XE is the same as that previously described
for SIC. However, the maximum memory available on a SIC/XE system
is 1 megabyte (220 bytes). This increase leads to a change in instruction formats
and addressing modes.

System Software

Registers
The following additional registers are provided by SIC/XE:

Mnemonic Number Special use

B 3 Base register; used for addressing

S 4 General working register—no special use
T 5 General working register—no special use
F 6 Floating-point accumulator (48 bits)

Data Formats

SIC/XE provides the same data formats as the standard version. In addition,
there is a 48-bit floating-point data type with the following format:

1 11 36

exponent fraction

The fraction is interpreted as a value between 0 and 1; that is, t?le assumed
binary point is immediately before the high-order bit. For normalized floating-
point numbers, the high-order bit of the fraction must be 1. The exponent is
interpreted as an unsigned binary number between 0 and 2047. If the exponent
has value e and the fraction has value f, the absolute value of the number
represented is

f * 2(9-1024)_

The sign of the floating-point number is indicated by the value of s (0 = positive,
1 = negative). A value of zero is represented by setting all bits
(including sign, exponent, and fraction) to 0.

Instruction Formats

The larger memory available on SIC/XE means that an address will (in general)
no longer fit into a 15-bit field; thus the instruction format used on the standard
version of SIC is no longer suitable. There are two possible options—either use
some form of relative addressing, or extend the address field to 20 bits. Both of
these options are included in SIC/XE (Formats 3 and 4 in the following

Background

description). In addition, SIC/XE provides some instructions that do not
reference memory at all. Formats 1 and 2 in the following description are used
for such instructions. %

The new set of instruction formats is as follows. The settings of the flag
bits in Formats 3 and 4 are discussed under Addressing Modes. Bit e is used
to distinguish between Formats 3 and 4 (¢ = 0 means Format 3, ¢ = 1 means
Format 4). Appendix A indicates the format to be used with each machine
instruction.

Format 1 (1 byte):

8
S

Example. RSUB (Return to subroutine)

opcode
0100 1100

4 C
Format 2 (2 bytes):
8 4 4
op r1 r2

Example. COMPR A, S (Compare the contents of registers A & S)

opcode A S
[1010 0000[0000 [0100]
8-bit 4-bit 4-bit
2 bytes
A 0 0 4 Object code

Format 3 (3 bytes):

6 111111 12
op n{i|x|biple disp

System Software

Example. LDA #3 (Load 3 to Accumlator A)

6 111111 12
[0000 oofo]1]ofolo]ofoooo ococo o011 |
opcode n i x bp-e
0 1 0 0 0 3 Object code

Format 4 (4 bytes):

6 111111 20

op nli|xib|pte address

Example. +JSUB RDREC (Jump to the address, 1036)

6 111111 20
foroo 1oJ1]1]oJo]o]2]oo00 0001 0000 0011 0110]

opcode n i x bp e B

4 B 1 0 1 0 3 6 Object code

Addressing Modes

Two new relative addressing modes are available for use with instructions
assembled using Format 3. These are described in the following table:

Mode Indication Target address calculation

Base relative b=1,p=0 TA=(B)+disp (0 s disp = 4095)

Program-counter b=0,p=1 TA=(PC)+disp (2048 < disp < 2047)
relative

For base relative addressing, the displacement field disp in a Format 3 instruction
is interpreted as a 12-bit unsigned integer.

1056 STX LENGTH
6 111111 12
[ooo1 oo]1]z]of1]o]ofoo0o 0000 o000 |
opcode n i x bp e

1 3 4 0 0 0 Obiject code
EA = LENGTH = 0033 EA =disp + [B]
[B] = 0033
disp =0

The content of the address 0033 is loaded to the index register X.

Background

For program-counter relative addressing, this field is interpreted as a 12-bit
signed integer, with negative vaiues represented in 2’s complement notation.

0000 STL RETADR
6 111111 12
{0001 o1f1[1[ofc]1]o]o000 0010 1101 |
opcode n i x bp e

1 7 2 1] 2 D Obiject code
EA = RETADR = 0030 EA = (PC) + disp
PC = 0003 (address of the next instruction)
disp'= 002D

Linkage register contains the content of RETADR 0030.

If bits b and p are both set to 0, the disp field from the Format 3 instruction
is taken to be the target address. For a Format 4 instruction, bits b and p are
normally set to 0, and the target address is taken from the address field of
the instruction. We will call this direct addressing, to distinguish it from the
relative addressing modes described above.

LDA LENGTH
6 111111 12

foooo oo]1]1]ofolo]o]oooo o011 o011
opcode n i x bp e
0 3 0 0 3 3

Accumulator contains the content of LENGTH 0033. .

Any of these addressing modes can also be combined with indexed
addressing—if bit x is set to 1, the term (X) is added in the target address cal-
culation. Notice that the standard version of the SIC machine uses only direct
addressing (with or without indexing).

STCH BUFFER, X

6 111111 12
0101 01]1]1]{1|1]ojofo0o00 0000 0011
opcode n i x bp e

5 7 C 0 0 3
BUFFER = 0036
[B] = 0033
disp =3

Accuinulator A contains the content of BUFFER 0036.

Bits i and 7 in Formats 3 and 4 are used to specify how the target address
is used. If bit i = 1 and n = 0, the target address itself is used as the operand
value; no memory reference is performed. This is called immediate addressing.

11

12

System Software

LDA #9
6 111111 12
0000 oofof1]ofo]ofoloooo 0000 1001]
opcode n i x bp e
0 1 0 0 0 9 Object code

Accumulator contains 9.

I[fbiti = 0 and n = 1, the word at the location given by the target address is
fetched; the value contained in this word is then taken as the address of the
operand value. This is called indirect addressing.

002A 'J @ RETADR
6 111111 12
[0011 11f1]ofo]o[1]0oJoc00 0000 0011]
opcode n i x bp e

3 E 2 0 0 3 Object code
RETADR = 0030
PC = 002D (address of the next instruction)
disp = 003

Jump to content of the address 0030 RETADR.

If bits i and n are both 0 or both 1, the target address is taken as the loca-
tion of the operand; we will refer to this as simple addressing. Indexing cannot
be used with immediate or indirect addressing modes.

Many authors use the term effective address to denote what we have called
the target address for an instruction. However, there is disagreement concern-
ing the meaning of effective address when referring to an instruction that uses
indirect addressing. To avoid confusion, we use the term target address
throughout this book.

SIC/XE instructions that specify neither immediate nor indirect addressing
are assembled with bits n and i both set to 1. Assemblers for the standard version
of SIC will, however, set the bits in both of these positions to 0. (This is because
the 8-bit binary codes for all of the SIC instructions end in 00.) All SIC/XE
machines have a special hardware feature designed to provide the upward com-
patibility mentioned earlier. If bits n and 7 are both 0, then bits b, p, and e are con-
sidered to be part of the address field of the instruction (rather than flags
indicating addressing modes). This makes Instruction Format 3 identical to the
format used on the standard version of SIC, providing the desired compatibility.

Figure 1.1 gives examples of the different addressing modes available on
SIC/XE. Figure 1.1(a) shows the contents of registers B, PC, and X, and of
selected memory locations. (All values are given in hexadecimal.) Figure 1.1(b)
gives the machine code for a series of LDA instructions. The target address
generated by each instruction, and the value that is loaded into register A, are

Background 13
(B) = 006000
) L[]
. . (PC) = 003000
L] .
. . (X) = 000090
3030 003600
L] L]
L] L]
L] .
3600 103000
L] L]
L L]
L] L[]
L] L]
L[] L]
6390 00C303
L] L]
L] L]
L L]
L] L[]
C303 003030
L] .
L] L
L[] L]
L] L
(a)
Machine instruction Value
. " loaded
Hex Binary into
: T Target register
op n i x b p e disp/address address A
032600 000000 1 1 0 0 1 0 0110 0000 0000 3600 103000
03C300 000000 1 1 1 1 0 0 0011 0000 0000 6390 00C303
022030 000000 1 0 o0 0 1 0 0000 0011 0000 3030 103000
010030 000000 0 1 O O 0 O 0000 0011 0000 30 000030
003600 000000 0 O ©O0 0 1 1 0110 0000 0000 3600 103000
0310C303 000000 1 1 0 0 0 1 0000 1100 0011 0000 0011 C303 003030
(b)

Figure 1.1 Examples of SIC/XE instructions and addressing modes.

14

System Software

also shown. You should carefully examine these examples, being sure you
understand the different addressing modes illustrated.

For ease of reference, all of the SIC/XE instruction formats and addressing
modes are summarized in Appendix A.

Instruction Set

SIC/XE provides all of the instructions that are available on the standard
version. In addition, there are instructions to load and store the new registers
(LDB, STB, etc.) and to perform floating-point arithmetic operations (ADDF,
SUBF, MULF, DIVF). There are also instructions that take their operands from
registers. Besides the RMO (register move) instruction, these include
register-to-register arithmetic operations (ADNR, SUUBR, MULR, DIVR). A spe-
cial supervisor call instruction (SVC) is provided. Executing this instruction
generates an interrupt that can be used for communication with the operating
system. (Supervisor calls and interrupts are discussed in Chapier £.)

There are also several other new instructions. Appendix A gives a complete
list of all SIC/XE instructions, with their operation codes and a specification of
the function performed by each.

Input and Output

The 1/0 instructions we discussed for SIC are also available on SIC/XE. In
addition, there are I/O channels that can be used to perform input and output
while the CPU is executing other instructions. This allows overlap of comput-
ing and I/0, resulting in more efficient system operation. The instructions
SIO, TIO, and HIO are used to start, test, and halt the operation of 1/O channels.
(These concepts are discussed in detail in Chapter 6.)

1.3.3 SIC Programming Examples

This section presents simple examples of SIC and SIC/XE assembler language
programming. These examples are intended to help you become more familiar
with the SIC and SIC/XE instruction sets and assembler language. It is assumed
that the reader is already familiar with the assembler language of at least one
machine and with the basic ideas involved in assembly-level programming.

The primary subject of this book is systems programming, not assembler
language programming. The following chapters contain discussions of various
types of system software, and in some cases SIC programs are used to illus-
trate the points being made. This section contains material that may help you
to understand these examples more easily. However, it does not contain any
new material on system software or systems programming. Thus, this section
can be skipped without any loss of continuity.

